A Quantum Theory of Speciation

Kerry M. Soileau

January 14, 2012

Abstract

We propose a theoretical model of quantum speciation among elements of a finite dimensional Hilbert space. The potential for species diversity and the current environment are represented by linear operators satisfying a compatibility criterion. A method for calculating probabilities of production of individuals is defined.

Keywords. Hilbert space, operator, quantum, speciation.

1 Introduction

Let H be a Hilbert space H with inner product $\langle \cdot, \cdot \rangle$ and finite dimension n. We say that the ordered pair (A, B) is <u>compatible</u> if A and B are linear operators on H, B is Hermitian and the composition AB has all real eigenvalues and a unique largest eigenvalue. By C_H we mean the collection of compatible ordered pairs.

Fix $(E, S) \in C_H$. Let the environment be represented by E, and the species by S. The interaction of the species with the environment is represented by the linear operator R = ES. Let the unit eigenvectors of S be denoted by $V(S) = \{s_1, s_2, s_3, \dots, s_n\}$. This set represents the "individuals" genetically possible for the species represented by S. Note that V(S) forms an orthonormal basis for H. Let the unit eigenvectors of R be denoted by V(R), and let $r \in V(R)$ be the eigenvector with largest eigenvalue. The probability of production of the individual s_i is defined to be $|\langle r, s_i \rangle|^2$ for each i = $1, 2, 3, \dots, n$.

EXAMPLE

Take the Hilbert space to be \mathbb{R}^8 with the usual topology and inner product. Let the environment be represented by the matrix

	0.58	0.38	-0.49	0.45	-0.87	0.53	0.58	0.61
E =	0.38	0.25	-0.32	0.29	-0.57	0.34	0.38	0.40
	-0.49	-0.32	3.01	-0.38	-1.39	-0.45	-0.49	-0.52
	0.45	0.29	-0.38	0.35	-0.68	0.41	0.45	0.48
	-0.87	-0.57	-1.39	-0.68	3.07	-0.79	-0.87	-0.92
	0.53	0.34	-0.45	0.41	-0.79	0.48	0.52	0.56
	0.58	0.38	-0.49	0.45	-0.87	0.52	0.57	0.61
	0.61	0.40	-0.52	0.48	-0.92	0.56	0.61	0.65 /

and let the species be represented by the matrix

$$S = \begin{pmatrix} 4.62 & -0.33 & -0.95 & -0.41 & -0.37 & -0.21 & -1.33 & 0.06 \\ -0.33 & 7.96 & -0.10 & -0.04 & -0.04 & -0.02 & -0.13 & 0.00 \\ -0.95 & -0.1 & 6.10 & 0.43 & 0.78 & -0.28 & -0.72 & 0.04 \\ -0.41 & -0.04 & 0.43 & 5.32 & 0.12 & -0.11 & -0.91 & -0.16 \\ -0.37 & -0.04 & 0.78 & 0.12 & 2.96 & 0.24 & 0.61 & 0.08 \\ -0.21 & -0.02 & -0.28 & -0.11 & 0.24 & 3.62 & -0.01 & 0.93 \\ -1.33 & -0.13 & -0.72 & -0.91 & 0.61 & -0.01 & 4.03 & -0.12 \\ 0.06 & 0.00 & 0.04 & -0.16 & 0.08 & 0.93 & -0.12 & 1.35 \end{pmatrix}$$

The interaction of the species with the environment is given by the matrix

$$R \equiv ES = \begin{pmatrix} 2.31 & 2.81 & -4.61 & 1.14 & -2.60 & 2.23 & 0.85 & 1.12 \\ 1.52 & 1.85 & -3.01 & 0.72 & -1.71 & 1.44 & 0.56 & 0.73 \\ -3.63 & -2.54 & 18.07 & -0.10 & -2.07 & -3.13 & -3.89 & -1.02 \\ 1.80 & 2.14 & -3.57 & 0.89 & -2.03 & 1.73 & 0.66 & 0.88 \\ -2.10 & -4.08 & -4.68 & -2.44 & 7.47 & -2.31 & 1.34 & -1.63 \\ 2.13 & 2.51 & -4.21 & 1.05 & -2.37 & 2.03 & 0.74 & 1.02 \\ 2.33 & 2.81 & -4.59 & 1.15 & -2.61 & 2.19 & 0.81 & 1.11 \\ 2.43 & 2.96 & -4.87 & 1.23 & -2.75 & 2.36 & 0.89 & 1.19 \end{pmatrix}$$

The eigenvalues of the matrix R are given by

 $\lambda\left(R\right) = \{22.529, 12.075, 0.059, -0.049, -0.028, 0.024, 0.008, 0.003\}$

The eigenvectors of the matrix ${\cal R}$ are given by

$$V(R) = \{(-0.26, -0.17, 0.81, -0.20, -0.09, -0.24, -0.26, -0.27), \\ (-0.25, -0.16, -0.28, -0.19, 0.78, -0.23, -0.25, -0.26), \\ (0.09, 0.60, 0.04, -0.39, -0.04, -0.54, 0.27, -0.34), \\ (-0.25, -0.08, 0.17, -0.18, -0.08, 0.45, 0.81, -0.07), \\ (-0.34, 0.30, -0.01, 0.38, 0.20, 0.40, -0.17, -0.65), \\ (0.59, 0.18, 0.31, -0.07, 0.58, 0.38, 0.09, 0.18), \\ (0.08, -0.05, -0.02, -0.23, -0.13, 0.40, -0.16, -0.86), \\ (-0.43, 0.12, -0.13, -0.39, -0.01, 0.09, -0.49, 0.62)\}$$

The eigenvector of ${\cal R}$ with largest eigenvalue is

$$(-0.26, -0.17, 0.81, -0.20, -0.09, -0.24, -0.26, -0.27).$$

The eigenvectors of the matrix \boldsymbol{S} are given by

$$V(S) = \{(0.10, -1.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00), \\ (0.35, 0.03, -0.83, -0.38, -0.18, 0.05, 0.12, 0.01), \\ (-0.56, -0.05, 0.04, -0.48, 0.20, 0.09, 0.64, 0.01), \\ (0.40, 0.04, 0.48, -0.74, -0.01, -0.08, -0.22, 0.03), \\ (0.02, 0.00, 0.02, -0.01, 0.14, 0.92, -0.17, 0.34), \\ (-0.49, -0.05, 0.00, -0.17, -0.78, 0.06, -0.33, 0.02), \\ (0.39, 0.04, 0.29, 0.21, -0.55, 0.17, 0.62, 0.06), \\ (-0.03, 0.00, -0.03, 0.03, 0.00, -0.34, 0.02, 0.94)\}$$

The probabilities of production are as shown in the Table below:

2 Motivation

In quantum mechanics, observables are represented by self-adjoint operators on a Hilbert space. Thus in proposing a model of quantum speciation, it is natural to regard a species as a whole as some self-adjoint operator S. In the quantum mechanical setting, each possible measurement of an observable corresponds to a unit eigenvector and eigenvalue of this operator, so by analogy we regard each unit eigenvector of the species linear operator Sto represent a possible individual. We postulate that each species will have only finitely many possible individuals, thus we assume that S, and also

Individ	Individual		
X	(.095,995, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)	.021240	
X	(-0.346, -0.033, 0.827, 0.382, 0.182, -0.048, -0.122, -0.010)	.510263	
×	(0.558, 0.053, -0.040, 0.473, -0.196, -0.089, -0.643, -0.014)	.005740	
×	(0.398, 0.038, 0.478, -0.746, -0.007, -0.077, -0.218, 0.032)	.244557	
×	(0.030, 0.003, 0.016, -0.008, 0.152, 0.914, -0.161, 0.338)	.077054	
X	(-0.500, -0.048, -0.006, -0.174, -0.772, 0.075, -0.340, 0.021)	.091183	
¥	(-0.387, -0.037, -0.292, -0.206, 0.556, -0.162, -0.618, -0.063)	.006876	
×	(-0.034, -0.003, -0.033, 0.030, -0.000, -0.341, 0.021, 0.938)	.043087	

the Hilbert space, have finite dimension. Thus S is in fact Hermitian. We may then regard the eigenvalues of each unit eigenvector (i.e. individual) of S as representing the reproductive strength of that individual. We model the influence of the environment by means of a linear operator E which is composed with S to produce the resultant operator R = ES. We require that (E, S) be compatible, in the sense defined above, so that R will have all real eigenvalues and a unique largest eigenvalue.

The definition of probability of production was motivated by the following observation. If $\vec{\varphi}$ is a random vector in \mathbb{R}^n , how may we determine the unit vector $\hat{v} \in \mathbb{R}^n$ which maximizes the expectation value $E(\vec{\varphi} \cdot \hat{v})^2$? It's not difficult to show that this is accomplished by taking \hat{v} to be an eigenvector with maximal eigenvalue of the matrix

$$\begin{pmatrix}
E\varphi_1\varphi_1 & E\varphi_1\varphi_2 & \cdots & E\varphi_1\varphi_n \\
E\varphi_2\varphi_1 & E\varphi_2\varphi_2 & \cdots & E\varphi_2\varphi_n \\
\vdots & \vdots & \ddots & \vdots \\
E\varphi_n\varphi_1 & E\varphi_n\varphi_2 & \cdots & E\varphi_n\varphi_n
\end{pmatrix}$$

The maximal value of $E(\vec{\varphi}\cdot\hat{v})^2$ is then equal to this eigenvalue. Thus in the

case that there exists a random vector $\vec{\varphi}$ such that

$$R = \begin{pmatrix} E\varphi_1\varphi_1 & E\varphi_1\varphi_2 & \cdots & E\varphi_1\varphi_n \\ E\varphi_2\varphi_1 & E\varphi_2\varphi_2 & \cdots & E\varphi_2\varphi_n \\ \vdots & \vdots & \ddots & \vdots \\ E\varphi_n\varphi_1 & E\varphi_n\varphi_2 & \cdots & E\varphi_n\varphi_n \end{pmatrix}$$

then $E(\vec{\varphi} \cdot \hat{v})^2$ is maximized for $\hat{v} = \hat{v}_{\max}$, where \hat{v}_{\max} is the largest eigenvalue of R. We may express \hat{v}_{\max} as a unique linear combination of the eigenvectors (individuals) of S, like so: $\hat{v}_{\max} = \sum_{i=1}^{N} (\hat{v}_{\max} \cdot \hat{s}_i)\hat{s}_i$. Again following the pattern seen in the quantum mechanical setting, we define the probability of "observing", i.e. producing the individual represented by \hat{s}_i as $|\langle \hat{v}_{\max}, \hat{s}_i \rangle|^2 = (\hat{v}_{\max} \cdot \hat{s}_i)^2$. Although the motivation involves Hermitian operators R, this is not assumed in the definition of compatible operators.

3 Bibliography

Carson, Hampton L., Chromosomal Tracers of Founder Events, *Biotropica*, Vol. 2, No. 1 (Jun., 1970), pp. 3-6.

4 Contact

Email: kerry@kerrysoileau.com